
1 
 

Evaluation of the Multi-Angle Implementation of Atmospheric Correction 1 

(MAIAC) Aerosol Algorithm through Intercomparison with VIIRS Aerosol 2 

Products and AERONET 3 

 4 

Stephen D. Superczynski 5 

Systems Research Group Inc., NOAA/NESDIS/STAR, College Park, Maryland 6 

Shobha Kondragunta 7 

NOAA/NESDIS/STAR, College Park, Maryland 8 

Alexei I. Lyapustin 9 

NASA Goddard Space Flight Center, Greenbelt, Maryland 10 

 11 

Corresponding author: Stephen Superczynski, SRG Inc. (at NOAA/NESDIS/STAR), 12 

5825 University Research Court, College Park, MD 20740 13 

E-mail: stephen.superczynski@noaa.gov 14 

 15 

 16 

Key Points: 17 

 MAIAC algorithm is evaluated for use in future satellite missions to derive information on 18 

aerosol properties 19 

 MAIAC’s use of time-series observations allow it to derive BRF which in turn improves cloud 20 

masking and aerosol-surface retrievals. 21 

 Comparison with AOT from VIIRS and AERONET  show that MAIAC exhibits low bias over 22 

North America with high spatial coverage 23 

 24 

https://ntrs.nasa.gov/search.jsp?R=20180001540 2018-07-26T06:47:15+00:00Z

mailto:stephen.superczynski@noaa.gov


2 
 

Abstract 25 

The Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm is under evaluation 26 

for use in conjunction with the Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission.  27 

Column aerosol optical thickness (AOT) data from MAIAC are compared against corresponding data 28 

from the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument over North America during 29 

2013. Product coverage and retrieval strategy, along with regional variations in AOT through 30 

comparison of both matched and un-matched seasonally gridded data are reviewed.  MAIAC shows 31 

extended coverage over parts of the continent when compared to VIIRS, owing to its pixel selection 32 

process and ability to retrieve aerosol information over brighter surfaces. To estimate data accuracy, 33 

both products are compared with AERONET Level 2 measurements to determine the amount of error 34 

present and discover if there is any dependency on viewing geometry and/or surface characteristics.  35 

Results suggest that MAIAC performs well over this region with a relatively small bias of -0.01; 36 

however there is a tendency for greater negative biases over bright surfaces and at larger scattering 37 

angles.  Additional analysis over an expanded area and longer time period are likely needed to determine 38 

a comprehensive assessment of the products capability over the Western Hemisphere.  39 
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1.  Introduction 47 

Aerosols are a key component of the Earth’s climate and environmental system due to their impact on 48 

the radiative budget of the planet and influence on air quality events [Ramanathan et al., 2001]. 49 

Information on the amount and composition of the aerosol particles suspended in the atmosphere is 50 

required to understand their role as both direct contaminantes and precursors to air pollution [Wang and 51 

Christopher, 2003; Al-Saadi et al., 2005]. The GEO-CAPE mission was recommended by the National 52 

Research Council’s 2007 Decadal Survey in order to provide multiple observations per day in support of 53 

the atmospheric composition and coastal biophysics disciplines [NRC, 2007]. Many current sensors 54 

dedicated toward atmospheric composition sit in Low Earth Orbit (LEO) and have only one daytime and 55 

one nighttime overpass for a given location when more frequent measurements are needed to fully 56 

monitor the emission of pollutants and their transport. A geostationary platform provides both the 57 

temporal and spatial resolution needed to understand the conditions and processes leading to poor air 58 

quality events and the necessary response [Lahotz et al., 2012].  59 

Originally planned as a large satellite carrying multiple instruments, GEO-CAPE has shifted toward a 60 

phased implementation making use of available space on commercial geostationary satellites. This 61 

utilization of hosted payloads should help to reduce risk and costs, and has been supported by both 62 

science working groups [Fishman et al., 2012]. The atmospheric science working group is tasked with 63 

developing a strategy which allows for the observation of aerosols and trace gases for use in air quality 64 

studies.  The MAIAC algorithm is the current candidate to provide information on aerosols from this 65 

geostationary satellite. 66 

The MAIAC algorithm provides simultaneous retrievals of surface bidirectional reflectance distribution 67 

function (BRDF), bidirectional reflectance factor (BRF) commonly called surface reflectance, and AOT 68 

at 466 nm over clear sky and snow-free scenes using a time series of MODerate Imaging 69 
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Spectroradiometer (MODIS) observations. This BRDF characterization over time for varying 70 

geometries is used, along with the spectral regression coefficient (SRC), to help the MAIAC algorithm 71 

retrieve AOT over bright surfaces with improved accuracy [Lyapustin et al., 2011].   72 

Here this new generic algorithm is assessed through a comparison with the operational VIIRS aerosol 73 

algorithm which uses an atmospheric correction approach. VIIRS was chosen for this comparison due to 74 

the improvements over its predecessors in terms of resolution, pixel aggregation, and swath width.  For 75 

instance, MODIS has a long history of providing aerosol retrievals with high accuracy, but it currently 76 

only produces AOT at a maximum resolution of 3 km, and has greater distortion at the swath edge when 77 

compared to VIIRS.  The Multi-angle Imaging Spectroradiometer (MISR) uses nine fixed-angle cameras 78 

to view each location at a variety of viewing angle which allows it to also retrieve AOT over brighter 79 

surfaces; however its limited swath width (400 km) and coarse resolution (17.6 km) are prohibitive to its 80 

inclusion in this analysis. Ultimately, the sensor characteristics and availability of .75 km AOT retrievals 81 

make it ideal for a comparison with MAIAC.  In this study,  a years’ worth of AOT from both MAIAC 82 

and VIIRS over the North American continent is analyzed to look at differences in cloud screening, bias 83 

dependence and overall accuracy. 84 

2. Data  85 

2.1 MAIAC AOT 86 

The MAIAC algorithm retrieves surface reflectance and AOT using MODIS L1B reflectances which 87 

have been gridded at a 1 km resolution. It utilizes a 4-16 day time series of clear MODIS scenes to 88 

retrieve BRDF and Spectral Regression Coefficients (SRC), which relates surface reflectance at 89 

0.466m and 2.13m (MODIS bands 3 and 7) [Lyapustin et al., 2012].  Unlike MISR, which collects 90 

nearly-simultaneous observations of each pixel from various angles, the MAIAC algorithm uses 91 

consecutive overpasses from a single-look instrument like MODIS to acquire multi-angle sets of 92 



5 
 

observations for each location. The use of a time-series of gridded MODIS observations also has the 93 

advantage of being able to simulate geostationary satellite observations, albeit with a significantly larger 94 

time difference between images. MAIAC relies on the assumption that surface reflectance changes 95 

rapidly in space but slowly in time, and therefore can be assumed constant over limited time scales.  By 96 

contrast, the extent of clouds and aerosols can change greatly between MODIS overpasses. 97 

The following is a brief overview of the MAIAC aerosol algorithm, a more detailed description of the 98 

MAIAC theoretical background and processing steps can be found in Lyapustin et al., (2011).  Once the 99 

MODIS reflectance is gridded and split into both 600 x 600 km tiles and 25 x 25 km blocks, they are 100 

placed in a queue of 4-16 days. Water vapor is first derived from MODIS near-IR bands [Lyapustin et al., 101 

2014] using a modification of the algorithm described in Gao and Kauffman (2003). An internal cloud 102 

mask uses spectral reflectance and brightness temperature tests similar to the operational MODIS cloud 103 

mask algorithm [Frey et al., 2008], along with the reference clear-sky image developed using a covariance 104 

based algorithm. Clouds can be detected since the spatial pattern of the surface often doesn’t change 105 

noticeably from day to day, while cloud residency is relatively short.  Scenes are compared at both the 106 

block and pixel level against a clear-sky reference image built using the data queue [Lyapustin et al., 107 

2008]. The BRDF is then retrieved at MODIS band 7 (2.1 µm) for clear pixels, followed by retrieval of 108 

SRC in MODIS band 3 (0.466um). This retrieval of SRC gives an assessment of surface BRDF (0.466um) 109 

at pixel level, which allows MAIAC to retrieve AOT at high 1km resolution.  110 

The MAIAC algorithm provides AOT at 466 nm, however in order to compare directly with VIIRS, it 111 

must be converted to AOT at 550 nm. To do this, a set of ratios representing the spectral slope of a given 112 

AOT are used. These ratios, which are taken directly from the aerosol background model, are part of the 113 

MAIAC look-up tables [Lyapustin et al., 2011]. MODIS-based MAIAC aerosol products were produced 114 

over North America for the entire MODIS record up until July 2014. MAIAC is currently at version 1, 115 

and data used for this analysis was obtained from NASA on November 17, 2014. 116 
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2.2 VIIRS AOT  117 

The Visible and Infrared Imaging Radiometer Suite (VIIRS) is a scanning radiometer carried on board 118 

the Suomi-NPP (National Polar-orbiting Partnership) satellite; a joint venture between NOAA and 119 

NASA meant to help transition to the Joint Polar Satellite System (JPSS), the next generation in U.S. 120 

polar-orbiting satellites. The operational VIIRS AOT product  is produced by the Interface Data 121 

Processing System (IDPS), which takes raw instrument data from S-NPP and processes them into the 122 

Sensor Data Records (SDRs) that are used as inputs for the Environmental Data Records (EDRs), 123 

including AOT. The aerosol algorithm uses the dark-target approach to retrieve AOT. This method is 124 

built upon the legacy of retrieving aerosol properties from previous earth sensing satellite missions 125 

[Holben et al., 1992; Kaufman et al., 1997]. The algorithm is comprised of two distinct parts which are 126 

applied based on the surface type. Over ocean, the VIIRS algorithm is nearly identical to the MODIS 127 

ocean algorithm [Tanre et al., 1997], which uses a combination of fine and coarse mode aerosol models 128 

in attempt to replicate the top-of-atmosphere (TOA) reflectance.  Over land, the VIIRS aerosol 129 

algorithm is based on the MODIS Atmospheric Correction algorithm for determining surface reflectance 130 

[Vermote and Kotchenova, 2008]. Aerosol information is retrieved by comparing the derived spectral 131 

surface reflectance ratios to prescribed ratios of those reflectances, and chooses the aerosol model and 132 

AOT that minimizes the residual. The VIIRS aerosol algorithm operates under the assumption of a 133 

Lambertian surface when retrieving the surface reflectance. An overview of the VIIRS sensor and an in-134 

depth explanation of the scientific background and flow of the VIIRS aerosol algorithm are presented in 135 

Jackson et al., (2013).  136 

The aerosol retrieval for both ocean and land is performed at the pixel resolution (750 m). This pixel 137 

level product is known as the Intermediate Product (IP) as it is used to create the aggregated AOT EDR, 138 

along with acting as an input for other VIIRS products.  The VIIRS algorithm aggregates 8x8 arrays of 139 

IP AOT pixels into a single EDR pixel with a resolution of 6 km at nadir. At the IP level, the VIIRS 140 
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Cloud Mask (VCM) and a series of internal checks are applied to the aerosol product, resulting in each 141 

pixel being given one of four quality designations.  AOT is reported only for pixels in the two best 142 

quality levels (good and degraded) and therefore these are the only pixels included in the aggregation 143 

process, which also incorporates additional filtering and internal checks, producing a higher quality 144 

product. 145 

A full year of VIIRS IP AOT spanning the time from February 1, 2013 to February 1, 2014 was used to 146 

compare against the MAIAC product.  The selection of this time period was predicated by data 147 

availability and maturity. The VIIRS Aerosol algorithm has undergone multiple upgrades since launch 148 

to improve the accuracy and precision of its retrievals. One significant upgrade was a change to the 149 

spectral reflectance ratios used in the land inversion which took place in January 2013 [Hongqing et al., 150 

2013]. This greatly reduced the bias in the aerosol products over land and allowed the product to reach 151 

‘validated’ status. Because data prior to this change becoming operational are still considered 152 

‘provisional’, they were not included in this analysis. Officially, the version of the product used in this 153 

study was given a maturity level of Validated Stage II  in August 2014, meaning that it has been shown 154 

to meet the performance thresholds [NOAA-NESDIS, 2014] using a moderate set of test data.  There are 155 

no such standards for the IP product; however it also meets the EDR requirements, making it suitable for 156 

quantitative analysis. 157 

Other significant changes have occurred to the AOT product after the time period used in this study 158 

which had impacts on retrieval accuracy and to a lesser extent, spatial coverage. These include an 159 

improvement in snow screening, spatial homogeneity tests, and the removal of the ephemeral water test 160 

which often incorrectly screened out portions of heavy smoke plumes.  Unfortunately due to the MAIAC 161 

data record ending in mid-2014, data containing these fixes were not included in this analysis. 162 

2.3 AERONET 163 
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AERONET is a global network of ground-based, automatic sky-scanning spectral radiometers used to 164 

measure aerosol optical properties [Holben et al., 1998]. Developed and maintained by NASA, these 165 

weather resistant sun photometers are a vital source of information for aerosol research and the 166 

validation of satellite derived aerosol properties.  The direct-sun measurements are used to compute the 167 

column AOT at a variety of wavelengths from 340 – 1020 nm, spanning a majority of the visible and 168 

Near-IR spectrum. Angstrom Exponent (AE) is also retrieved using wavelength pairs in the 169 

aforementioned range, along with the column water vapor. Level 2.0 AOT from AERONET sites in 170 

North America are used to compare against both the MAIAC and VIIRS AOT to determine accuracy 171 

and uncover any bias dependencies.  Level 2 data has the highest quality assurance of all AEROENT 172 

data and is cloud-cleared and fully calibrated [Smirnov et al., 2000]. The “ground truth” AOT at the 173 

VIIRS and MAIAC wavelengths are computed using the AERONET AOT at 500 and 440 nm 174 

respectively, using the AE retrieved in the 440-675 nm range.   175 

2.4 CALIPSO 176 

The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) is an active lidar instrument aboard 177 

the CALIPSO satellite. It provides vertically resolved information on clouds and aerosols using profiles 178 

of attenuated backscatter at 532 and 1064 nm at an along track resolution of 333 meters and a vertical 179 

resolution of 30 meters [Winker et al., 2009]. CALIOP is able to detect the number and extent of 180 

features such as aerosol or cloud layers using the backscatter profiles [Vaughan et al., 2004]. The level 2 181 

products are produced at the nominal resolution of 333 m as well as 1 and 5 km by aggregating 182 

consecutive observations.  For this study, the 1 km cloud layer products are used to verify the accuracy 183 

of the MAIAC and VIIRS cloud masks and determine if any issues related to cloud screening are 184 

influencing the analysis. A binary cloud mask is constructed from the ‘Number of Layers Found’ 185 

dataset, which simply gives the number of cloud layers found within that 1 km profile. 186 
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3. Results and Discussion 187 

3.1 Daily gridding of VIIRS and MAIAC 188 

Before assessing the MAIAC algorithm and how it compares to VIIRS, the datasets were gridded to 189 

directly compare their spatial extent and the quality of AOT retrievals.  A grid was constructed with a 190 

0.25o resolution in order to capture as much of the AOT spatial variability while limiting computational 191 

cost. The shaded domain outlined in Figure 1 shows the extent of the grid whose domain is limited by 192 

the MAIAC coverage over North America, which is largely confined to the Continental U.S. and 193 

Mexico. The result is a grid with dimensions of 256 x 116, or a total of 29,696 grid boxes. 194 

In order to compare the best retrievals from both algorithms, a set of quality checks were applied during 195 

the gridding process.  To start, data from both algorithms are restricted to the highest quality retrievals 196 

over land. To avoid any possible cloud leakage, the candidate pixel was required to be confidently clear 197 

and not be adjacent to a cloudy pixel in order to be used for gridding. Both MAIAC and VIIRS AOT 198 

have an associated geolocation file which gives the center coordinates of each pixel.  The gridding 199 

process averages any valid pixels whose center lat/lon falls within the same grid box, and the number of 200 

observations included in that average is recorded.   These daily gridded datasets were then averaged to 201 

look at statistics on the monthly to seasonal scale. 202 

3.2 Direct Comparison 203 

Once gridding of the data was completed, the datasets were directly compared through analysis of un-204 

paired seasonal AOT and looking at the differences in retrieval numbers. Due to the ability of MAIAC 205 

to retrieve AOT over brighter surfaces, it was expected that it would have greater spatial coverage than 206 

the operational VIIRS product, particularly in areas of sparse vegetation.   207 

3.2.1 Data coverage  208 
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Seasonal averages of AOT from MAIAC and VIIRS and the total number of retrievals per grid were 209 

analyzed in order to get a sense of the differences in coverage, and gain insight into the retrieval strategy 210 

and cloud screening of each algorithm.  Figure 2 provides a look at the average of AOT (top) and 211 

number of retrievals per grid (bottom) per season for each dataset. MAIAC has greater coverage and 212 

more retrievals than VIIRS particularly across the western half of the CONUS. MAIAC coverage is 213 

nearly complete during the summer and fall seasons, save for some inland water bodies and regions such 214 

as Great Salt Flats (UT) and White Sands (NM), while VIIRS is not able to retrieve over the bright 215 

surfaces that make up a large portion of the western U.S. This disparity in coverage is seen across all 216 

seasons with the differences being greater during winter and spring due to seasonal phenology. There are 217 

some similarities however; for instance during winter when neither MAIAC or VIIRS retrieve enough to 218 

populate grids over the northernmost sections of the U.S. or the high altitude regions of the inter-219 

mountain west. The reason for this is likely a combination of the solar zenith angle limits placed on 220 

good quality data and near-constant snow cover in these regions during the cold season.  221 

In terms of actual AOT values, Figure 2c highlights some differences between MAIAC and VIIRS. 222 

While the spatial patterns are very similar between the two, VIIRS tends to retrieve slightly higher AOT 223 

over many regions.  Over urban areas or mountainous terrain, this difference can be quite large and is 224 

noticeable in many seasons. In the springtime months, VIIRS AOT is also higher in the upper Mid-west 225 

and Great Lakes region where melting snow is likely contaminating the pixels leading to a poor 226 

retrieval.  These anomalies associated with sub-pixel snow have since been addressed in the operational 227 

VIIRS algorithm.   228 

Looking collectively at the results of this comparison, there are some features present in multiple 229 

seasons which emphasize the differences between the two algorithms and their pixel selection strategy. 230 

The underlying surface reflectance plays an important role in coverage of both datasets. MAIAC has 231 

shown the ability to retrieve AOT over the bright and soil dominated surfaces that are present across 232 



11 
 

much of the western U.S., while VIIRS is only able to retrieve over darker or vegetated regions.  This is 233 

also a problem in regions with high agricultural activity, such as the Lower Mississippi River Basin 234 

where fallow land prevents VIIRS from consistently retrieving AOT in all seasons besides the primary 235 

growing season (JJA).  However surface reflectance alone cannot account for the differences in 236 

retrievals seen in many other parts of the US throughout the year.  237 

3.2.2 Cloud Screening 238 

In an effort to understand the difference in coverage and to determine how the cloud masks are 239 

performing, data from MAIAC and VIIRS were collocated with the CALIOP instrument aboard the 240 

CALIPSO satellite.  First, the two cloud masks are converted to a binary mask with either a ‘clear’ or 241 

‘cloudy’ designation.  All datasets are subsetted to regions of overlap, after which the closest 242 

MAIAC/VIIRS pixel to the CALIOP profile is found using a modified version of the nearest neighbor 243 

approach utilized in similar comparison studies [Heidinger et al., 2012; Kopp et al., 2014]. Here we use 244 

a time window of 10 minutes centered on the CALIOP observation time in order to avoid cases where 245 

clouds detected by CALIOP have moved out of the MAIAC/VIIRS field of view. A maximum allowed 246 

distance of one pixel width is used to ensure that the closest pixel is indeed chosen, this is particularly 247 

necessary where the CALIOP profile passes from one tile/granule to the next. Collocation results 248 

between the cloud masks and CALOP detection were compared and are presented in Table 1 as a 249 

confusion matrix.  250 

Our first observation from Table 1 is that a considerably higher number of collocations for MAIAC exist 251 

than for VIIRS. This is not only due to MAIAC’s increased retrieval numbers but the  use of reflectance 252 

data from MODIS, which is part of the A-train constellation [Stephens et al., 2002] and shares a similar 253 

orbit and overpass time with CALIPSO. The VIIRS instrument flies at a slightly higher altitude and 254 
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therefore has a different orbital track, the consequence of which is a ground track that only coincides 255 

closely with the A-train satellites once every few days.   256 

To help determine the performance of each set of matchups we look at overall accuracy (Equation 1) 257 

along with two additional statistical measures: the True Positive Rate (TPR), and True Negative Rate 258 

(TNR) for which the formulas are given in Equations 2 and 3, respectively. The abbreviations used in 259 

these equations are noted next to their respective statistics in Table 1. A high TPR value indicates that 260 

the cloud mask is able to limit the number of false negatives (type II error), which lead to cloud leakage 261 

in the resulting product. Conversely, TNR is a measure of how good the cloud mask is at reducing the 262 

number of false positives (type I error); these false alarms can reduce the number of high quality 263 

retrievals and introduce sampling biases. 264 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃
     265 

 266 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
  267 

 268 

𝑇𝑁𝑅 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 269 

 270 

Overall accuracy of the both the MAIAC cloud mask (MCM) and the VCM were found to be identical 271 

(Table 1), but while the overall accuracy for the two cloud masks may be comparable, the errors 272 

observed were dissimilar.  The TPR and TNR metrics highlight the different types of errors associated 273 

with each cloud mask.  For instance, TPR for the MCM during this period is 96%, meaning that less 274 

than 5% of cloudy pixels were incorrectly designated as clear, while the TNR for MAIAC  is only 72%, 275 

leaving over a quarter of the clear pixels as determined by CALIOP out of the AOT processing chain 276 
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due to the supposition they are cloudy.  Monthly statistics for MAIAC show there is some seasonality to 277 

the TNR since it does not fall below 71% for much of the year except during summer (JJA) when it is in 278 

the 63%-66% range. The VCM displays a smaller difference between its error types with a TPR of 82% 279 

and a TNR of 92%, and a more limited seasonal dependence. These results show that VIIRS is able to 280 

strike a better balance between the Type I and Type II errors, while MAIAC’s strength is its ability to 281 

greatly reduce false negatives in the AOT record, thereby reducing bias. 282 

In terms of these Type I errors, since the MCM operates at both the block and pixel level, it is possible 283 

that diurnal convection produces sufficient cloud cover to cause the covariance between that block and 284 

the clear-sky reference image to decrease to the point that it is deemed cloudy. Likewise, cumulus cloud 285 

fields common over land during this season may be enough to trigger a cloudy designation for that pixel 286 

from MAIAC, while the very narrow field of view of the CALIOP sensor may pass between these small 287 

clouds leading to a conflicting collocation. Such instances of small clouds and sub-pixel clouds pose 288 

problems for all types of cloud masks produced by passive sensors. 289 

Seasonal statistics (Fig. 2) showed that MAIAC has a significantly greater number of high quality 290 

retrievals than VIIRS in many U.S. regions, even those where the surface is not bright enough to keep 291 

the algorithm from performing the retrieval. This would imply that either MAIAC is opting to retrieve 292 

AOT in unfavorable conditions (presence of clouds/snow, etc.) or that VIIRS is failing to retrieve at a 293 

high quality over these areas.  The results of the matchups with CALIPSO seem to suggest the later, as 294 

the MCM is being conservative in determining which pixels are cloud-free.  Therefore, cloud screening 295 

is not thought to be a substantial driver behind the differences in retrieval numbers; however other limits 296 

placed on AOT retrievals within the algorithms may be playing a part in the spatial coverage.  297 

Some recent preliminary analysis by the VIIRS Aerosol team into gaps in AOT over the CONUS has 298 

shown that the most probable cause for the reduced number of high quality IP retrievals is the limited 299 
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AOT range (0 to 2); and more precisely in this case, the lower bound of zero. Unlike VIIRS, which 300 

excludes the candidate pixel if the minimum residual corresponds to an AOT less than 0, MAIAC does 301 

not reject pixels whose surface reflectance falls below the expected value when computed with an AOD 302 

equal to 0. This happens on the occasion that the surface has changed significantly, or that the previous 303 

surface characterization is not correct. In the event this situation occurs, MAIAC reports an AOT of zero 304 

and then focuses on correcting the surface characterization with the next observation. 305 

Large areas of missing AOT in VIIRS granules can be  found in regions where the atmosphere is free of 306 

clouds or visible aerosols, meaning that the AOT is too small (negative) to be given a quality level high 307 

enough to be reported by the algorithm. This phenomenon is most prevalent in winter and spring when 308 

the AOT loading is small, and tends to be enhanced when the surface is sparsely vegetated and being 309 

viewed from the backscattering direction. In the recent VIIRS aerosol validation analysis performed by 310 

Huang et al., (2016) it was shown that VIIRS is often negatively biased during the period from late fall 311 

to early spring. Additionally, Liu et al., (2013) showed that VIIRS AOT tends to underestimate AOT 312 

when the surface is soil dominated.  These two conclusions from previous validation studies support the 313 

notion that VIIRS has a tendency to retrieve more negative AOT when certain seasonal, geometric, and 314 

surface conditions are present, which can lead to relatively large areas with limited to no retrievals.  315 

3.2.3 Collocated retrievals of AOT 316 

As noted in the previous section, VIIRS and MAIAC tend to characterize the spatial patterns of seasonal 317 

AOT in similar ways.  It also appears that MAIAC is generally a bit lower when compared to VIIRS, 318 

especially in the warm season. Observations collocated in time and space are needed to make sure that 319 

these two AOT products are being compared to one another under the same conditions.  Therefore, the 320 

gridded data are filtered so that only days when both algorithms have enough retrievals to populate the 321 

grid cell are used in the analysis. Figure 3 presents the results of this collocation for the spring and 322 
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summer seasons when the differences between the two are greatest. While there is better aggrement 323 

between MAIAC and VIIRS across much of the domain, the same trend of elevated AOT from VIIRS 324 

over the larger urban areas persists.  Summer is the season with the highest disparity between the two 325 

algorithms, when a widespread difference between VIIRS and MAIAC is seen in the eastern half of the 326 

domain. In Figure 3d, this difference is shown to be predominately ±0.1 or less; however there are small 327 

isolated pockets of larger bias up to 0.5. In other seasons, there is little systematic disagreement between 328 

the two with the exception of some high AOT from VIIRS over Montana and the Dakotas during the 329 

spring season. This discrepancy between the two could be a result of cloud contamination, or differences 330 

in surface characterization. 331 

Those areas where VIIRS is significantly higher than MAIAC are likely caused by the underlying 332 

surface since many of these anomalies are predominately located over heavily urbanized areas and 333 

mountainous terrain.  There are also smaller differences which are not as persistent but cover larger 334 

areas. An example of this can be seen in the summer season where VIIRS AOT in the eastern half of the 335 

U.S. is ubiquitously higher than MAIAC. Aerosol type and concentration can be widely different based 336 

on region, and problems characterizing these differences may be caused by certain underlying aspects of 337 

the aerosol algorithms.   338 

One such component of the algorithms that could be responsible for the regional contrast is the different 339 

aerosol models used to retrieve AOT.  MAIAC uses a dynamic model where physical parameters can 340 

change based on the magnitude of AOT.  Volumetric concentrations of the fine and coarse particles can 341 

also be varied, thereby allowing for a wider range of size parameter to be simulated.  In addition, 342 

MAIAC uses a background aerosol model that is tuned regionally based on AERONET optical thickness 343 

measurements. As a global product, VIIRS on the other hand uses five predefined aerosol models which 344 

have bimodal size distributions and static volumetric concentration parameters for each of the models 345 

and both particle sizes. Although not related to the aerosol models themselves, VIIRS also uses a 346 
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globally constant surface reflectance ratio to compare against the retrieved reflectance. This lack of 347 

accounting for such variations in surface type was discussed by Liu et al., (2013) as a potential source of 348 

regional bias in the AOT retrievals. In that analysis it was also found that VIIRS is biased high in the 349 

Eastern U.S. when compared to both AERONET and MODIS. Together, these differences in aerosol 350 

models and surface characterization are capable of producing the regional variations in AOT retrieved 351 

from MAIAC and VIIRS. 352 

3.3 Validation of products 353 

3.3.1 Comparison with AERONET AOT 354 

In general, AOT from MAIAC and VIIRS compare well to one another, however there are differences 355 

and it is difficult to get a sense of which exhibits the higher level of accuracy without an ‘unbiased’ 356 

dataset to compare against. Measurements from AERONET sun photometers have been used for this 357 

purpose for many of the satellite derived aerosol products since the network’s inception [Chu et al., 358 

2002; Kahn et al., 2005, Liu et al., 2013]. Most recently, in a manuscript by Huang et al., (2016) it was 359 

found using AERONET level 2 data that the VIIRS IP product has a global bias of 0.04. To determine 360 

the bias of the AOT produced by the two algorithms in question over our domain, we construct a set of 361 

matchups with AERONET level 2 data using the original datasets at their nominal resolution.  Petrenko 362 

et al., (2012) outlined a system for subsetting data from spaceborne sensors based on the location of 363 

ground-based sensors such as AERONET.  This same process of matching our datasets with AERONET 364 

is used here, where all good quality retrievals within 27.5 km of the AERONET site are selected.  As 365 

part of the matchup criteria, at least 20% of the total number of possible pixels within this circle are 366 

needed along with a minimum of 4 AERONET measurements over the time period of one hour centered 367 

on the satellite overpass time are required.  All pixels found to meet these requirements are averaged 368 

together, as are all ground measurement that fall in the time window.  369 
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Figure 4 shows the scatter plots constructed using the AERONET matchups with VIIRS and MAIAC. 370 

For all data matchups, VIIRS has a noticeable high bias which is pervasive at AOT < 0.04, and a 371 

moderate correlation of 0.64 with AERONET. However, a VIIRS positive bias of 0.043 compares well 372 

with the results of the global matchups presented in Huang et al., (2016). MAIAC on the other hand is 373 

highly correlated (0.82) with AERONET and exhibits only a slight negative bias when compared with 374 

AERONET. The greater number of MAIAC matchups is further evidence of its coverage and ability to 375 

retrieve over the brighter surfaces over which many AERONET stations in the western U.S. are located. 376 

In Figure 5, we highlight the dependence of the AOT bias on the magnitude of AOT by plotting the 377 

differences between VIIRS and AERONET at 25 AOT bins of increasing size.  The typical error 378 

(median of all matchup errors) is often less than ±0.05 with the exception of the strong negative bias for 379 

both products during times of high aerosol loading, with MAIAC having slightly greater bias as AOT 380 

increases.  The spread of VIIRS errors however is much greater than those for MAIAC as evidenced by 381 

the larger quartile ranges in most bins and the much higher maximum errors seen at low AOT. 382 

Aerosol type is also an important consideration when evaluating the AOT retrievals since the chosen 383 

aerosol model determines the spectral dependence of AOT. This spectral AOT can act as a proxy for 384 

particle size, and the Angstrom Exponent (AE) is often used to qualitatively describe this spectral 385 

dependence [Angstrom, 1929].  AE for coarse mode particles such as dust tend to be < 1, while finer 386 

particles produced from urban pollution or biomass burning are associated with AE values > 2 [Reid et 387 

al., 1999; Schuster et al., 2006]. AERONET provides AE for multiple wavelength pairs and can be used 388 

to determine if the retrieval errors from MAIAC or VIIRS are dependent on particle size. Figure 6 389 

provides a look at how each algorithm performs across the range of particle sizes. The color coding of 390 

the individual matchups is based on the AOT retrieved by AERONET. There is evidence of the larger 391 

positive biases present and previously discussed in the VIIRS data which is limited to low-to-moderate 392 

loading of finer particles. MAIAC meanwhile has very limited bias and dependence on particle size as 393 



18 
 

shown by the regression line. MAIAC however does have some issues retrieving accurately during high 394 

aerosol loading of coarse or mixed particle sizes (AE between 0.5 and 1.75). Figure 6 also reaffirms the 395 

results portrayed in Figure 4, however it shows that the larger biases tend to occur when the aerosol 396 

particle size is large, or when the concentration of coarse and fine particles is mixed. Both algorithms 397 

appear to perform quite well during cases of smoke or urban pollution. 398 

While not analyzed directly here for reasons stated in Section 1, the demonstrated performance of the 399 

MODIS aerosol product is useful for providing extra context. A study from 2013 by Levy et al. details 400 

the performance of the MODIS Collection 6 algorithm and specifically section 4.4 outlines the MODIS 401 

Dark Target (DT) algorithm. Results for MAIAC shown here in Figures 4 & 5 compare well with the 402 

MODIS algorithm (Figure 11 in Levy et al.) over land with similar levels of accuracy and precision. It is 403 

important to note however that the Levy et al. study used global DT data, whereas MAIAC retrieves 404 

over both dark and bright surfaces and is constrained to the CONUS region in our analysis. 405 

3.3.2 Dependence of AOT on Viewing Geometry and Surface Reflectance  406 

In an attempt to ascertain which conditions might cause biases in the AOT retrievals, we look at how 407 

they are impacted by changing viewing geometry and surface brightness.  Only data points where both 408 

VIIRS and MAIAC are matched with AERONET observations are used for this purpose, resulting in a 409 

dataset of 1034 matchups.  Viewing geometry dependence is determined using the following 3 410 

parameters: viewing zenith angle; relative azimuth angle; and scattering angle. The AOT biases are 411 

separated into bins using 5 degree increments and plotted as a function of increasing angle.  The results 412 

are shown in panels a, b, and c of Figure 7. 413 

In terms of viewing angle, both algorithms produce matches that are well distributed across the range of 414 

angles with VIIRS having greater range as a result of the increased swath width over MODIS. MAIAC 415 

has very little viewing angle dependence, and has a minimal amount of a negative bias. VIIRS has some 416 
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viewing angle dependence with positive biases at-nadir that approach zero for larger VZA. The number 417 

of matchups are not as uniform for RAA, as both MAIAC and VIIRS have a bimodal distribution of 418 

angles with limited number of matches near 90°. MAIAC has some small dependence on RAA but 419 

biases are generally low except for  the 80-110° range and near the extremes of 0° and 180° where 420 

matchups are very scarce. VIIRS AOT starts out with positive bias where strong back-scattering is 421 

occurring (RAA < 50°) with little dependency, however bias increases dramatically as the relative 422 

azimuth angle approaches 180°. It is worth noting that a limited amount of VIIRS matchups are 423 

available at RAA > 140°, which is a range with both high bias and variability. Both algorithms have 424 

some bias dependence on scattering angle. MAIAC biases are within 0.02 of the zero line for smaller 425 

scattering angles, but the negative bias continues to gets larger once SCA surpasses 140°. VIIRS also 426 

has a small negative bias which then becomes positive as scattering angle increases. 427 

Figure 7d shows the dependence of the two algorithms in terms of the MAIAC surface reflectance which 428 

is binned at intervals of 0.005. Minimal errors are observed for both datasets over dark surfaces up to a 429 

reflectance of 0.06, after which the algorithms start slowly trending in different directions.  The error 430 

becomes larger for VIIRS once the surface reflectance reaches 0.12, while MAIAC dependence on 431 

surface reflectance reverses after this point. The brighter surfaces also appear to cause increased 432 

fluctuation in bias for both of the algorithms 433 

As noted previously, there is some dependence on sun-sensor geometry for both of the algorithms 434 

analyzed here. Notably, there is a large difference in the level of dependence between retrievals in the 435 

back-scattering direction (RAA < 90°) and the forward-scattering direction (RAA > 90°) for VIIRS. The 436 

two algorithms also drift away from the zero line in opposite directions for scattering angles greater than 437 

100°. Due to the anisotropy of surface reflectance for many land targets, this change in viewing direction 438 

can lead to changes in the perceptible brightness of the surface, a phenomenon known as directional 439 

scattering. This effect causes an apparent brightening of the surface when viewed from in the back-440 
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scattering direction, and some dimming in the forward-scattering direction [Roujean, 1992].  MAIAC, 441 

through its use of the BRDF when retrieving AOT, attempts to account for and mitigate these effects.  442 

Based on the results in Figure 7d, it appears as though it is able to remove much of this dependence; 443 

VIIRS meanwhile, because of the assumption of a Lambertian surface, produces AOT with higher 444 

biases. 445 

To see how each algorithm handles these changes the matchups for surface reflectance have been further 446 

stratified based on the scattering direction (using RAA of 90° as a separator). The resulting biases and 447 

histograms for both directions are given in Figure 8. VIIRS dependencies are similar regardless of the 448 

scattering direction, although errors are markedly higher in the forward-scattering direction for brighter 449 

surfaces.  On the other hand, the dependency for MAIAC does look quite different depending on the 450 

scattering direction. MAIAC errors are near zero over dark surfaces in the back-scattering direction, yet 451 

quickly become negative as the surface gets brighter. In the forward-scattering direction, a rather 452 

consistent negative bias around -0.05 is found until surface reflectance surpasses 0.12, when it becomes 453 

more varied.  Comparing these two panels to Figure 6d, we see that the back-scattering retrievals tend to 454 

dominate the overall signal due to nearly two-thirds of the retrieval matchups falling within this relative 455 

azimuth range; with the only exception being the bright surfaces where MAIAC has few valid retrievals.  456 

The histograms also show that MAIAC has some offset in the surface reflectance of its retrievals in both 457 

directions when compared to VIIRS. This is likely a result of including the BRDF in its retrieval strategy 458 

which accounts for the effects of sun and satellite geometry thereby reducing the brightness in the 459 

backward direction and increasing it in the forward direction. 460 

3.3.3 Sources of Bias 461 

Matchups of MAIAC and VIIRS with AERONET data in the U.S. and surrounding areas have shown 462 

that biases are present that are angular dependent.  MAIAC dependencies are less pronounced than 463 

VIIRS, but a negative association with geometric surface attributes does exist.  Lyapustin et al., (2011) 464 
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showed that SRC does vary slightly with viewing geometry, and that the use of an average SRC value 465 

will cause the algorithm to overestimate surface reflectance in the forward direction and vise-versa for 466 

back-scattering geometries. This reduced brightening in the backward direction and increase in the 467 

surface reflectance in the forward scattering direction relative to VIIRS is evident in the histogram 468 

offsets seen in Figure 8.  469 

The consequence of this would be an underestimated AOT in the forward-scattering direction, and 470 

overestimation in the back-scattering direction, however we only find a consistent negative bias in the 471 

forward direction. In the back-scattering direction, the surface tends to be brighter due to reduced 472 

shadowing and lower aerosol backscattering compared to the forward-scattering direction. This can 473 

cause the sensitivity of the TOA reflectance to AOT to decrease, leading to higher uncertainty of AOT 474 

in the back-scattering direction. This combined with the limited amount of MAIAC matchups with a 475 

high surface reflectance in the back-scattering direction are likely leading to the larger, variable errors 476 

over bright surfaces.  477 

Previous global validation studies have focused on VIIRS Aerosol products [Liu et al., 2013 (EDR 478 

only); Huang et al., 2016 (EDR and IP)] and have shown that a slight positive bias is observed in AOT 479 

over land. As is shown in this analysis, Liu et al., (2013) also found a similar dependence in the EDR 480 

data in relationship to viewing zenith angle over land as is shown in this paper, although errors were 481 

found to be larger in this case.  This is not surprising as more noise is expected in the pixel-level IP AOT 482 

data, which does not have the benefit of aggregation and further screening.  Even with that in mind, the 483 

level of bias seen in this study for VIIRS products is concerning since data at this product level is useful 484 

to the air quality community who require highly accurate data for their applications.  Therefore, a brief 485 

attempt was made to uncover additional sources of bias to those already established by previous studies. 486 
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Recall from section 3.2 that urban ‘hotspots’ of AOT were consistently present over medium to large 487 

cities across the U.S. in all seasons (more so in warm seasons).  A fair amount of AERONET sites that 488 

are not surrounded by bright or soil-dominated surfaces in the U.S. are located in or near these urban 489 

areas, meaning that some of the bias may be attributed to these sites. In fact, of those matchups which 490 

exhibit excessive positive bias (> 0.1), 65% of them are associated with a handful of sites located in Los 491 

Angeles or Houston, two large and highly urbanized cities.  Over 85% of the highly biased matchups 492 

(20% of all matchups) originate from AERONET sites located in a major metro area. When looking at 493 

viewing geometry values where large biases are seen, we notice a considerable number of those 494 

AERONET sites also being in select urban areas, while sites with lower biases tend to be more random.  495 

This suggests that a sizable portion of the large biases and dependencies on viewing geometry in this 496 

domain may be due to a lack of accuracy over urban areas and that viewing geometry is an intensifier of 497 

those biases. 498 

4. AOT case studies 499 

Up to this point, the geographic inspection of the AOT products from MAIAC and VIIRS have been 500 

contained to seasonally gridded AOT.  In an attempt to observe and verify some of the findings from the 501 

bias analysis, a look at individual cases at the products’ native resolution are presented below.  This 502 

allows for qualitative comparison of the two products independent of the AERONET matchups which, 503 

with respect to VIIRS, were found to be heavily influenced by an urban bias. Two cases; one with a 504 

large area of smoke present over the northwestern U.S. and a more typical late-summer AOT case in the 505 

eastern half of the country were chosen. Careful attention was paid to make certain that the Aqua and 506 

Suomi-NPP overpass times for the selected date were close together (<20 min) so valid spatial 507 

comparisons could be made. 508 

4.1 High AOT case 509 
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In 2013, a few large historical wildfires took place in North America with one such fire being the Rim 510 

fire, which started on August 17th near Yosemite National Park and burned for over two months. Figure 511 

9 shows a VIIRS true-color image over the Western U.S. from August 25th along with AOT from VIIRS 512 

and MAIAC. The two products agree well over regions where both have retrieved AOT, however 513 

differences do exist. VIIRS IP AOT is higher over the thickest parts of the smoke plume and is noisier, 514 

however this is expected since it is a pixel-level product while the MAIAC AOT has the advantage of 515 

using gridded MODIS reflectance, and much of the information used to perform the retrieval is supplied 516 

from processing at the block-level. 517 

 Just as the analysis in section 3 showed, VIIRS coverage over brighter surfaces is limited compared to 518 

MAIAC, as large sections of Montana, Idaho and Wyoming lack any high quality retrievals. However 519 

VIIRS does retrieve more of the smoke in northern Idaho. The missing MAIAC retrievals in the far 520 

upper right section of the image are a result of it being outside MAIAC’s North American processing 521 

domain. There are also smaller rectangular holes in the MAIAC data near the center of the image which 522 

are a product of the block-level SRC retrieval that takes place within the aerosol retrieval.  In some 523 

cases, SRC may not be retrieved or updated due to cloudiness. This causes AOT to not be retrieved over 524 

the brighter surfaces within that block (25 km x 25km).   525 

4.2 Moderate AOT case 526 

Given that strong AOT bias dependencies exist in both the viewing geometry and AOT itself, a second 527 

case representing a more moderate aerosol loading scenario was investigated. Figure 10 includes the 528 

true-color image and AOT maps from VIIRS and MAIAC on Sept. 5th, 2013 over the Mid-western and 529 

Mid-Atlantic states. In contrast to the previous example, the spatial coverage of VIIRS is much closer to 530 

MAIAC in this case due to a majority of the surface being dark. The exception here is over inland water 531 

bodies such as the Great Lakes where VIIRS currently does not retrieve AOT. Once again, the two 532 
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products characterize the spatial variation in AOT in similar ways. Over much of the Ohio River valley, 533 

where an area of haze exists, the two algorithms produce results that are very alike, although VIIRS 534 

AOT is slightly higher in the vicinity of clouds in northern Illinois. VIIRS is also significantly higher 535 

over the Chicago and St. Louis urban areas which are circled in black, lending credibility to the theory 536 

that VIIRS is often biased high over cities. No AERONET sites are located in Chicago, but one is 537 

located in downtown St. Louis, where data shows that VIIRS is biased high by 0.05 while MAIAC has a 538 

bias of -0.11. There are also areas where VIIRS is retrieving slightly higher AOT in a more uniform 539 

manner. The clearest example of this is in the Mid-Atlantic where VIIRS is retrieving AOTs which are 540 

around 0.05 higher than MAIAC.  A similar pattern is also visible over a region stretching from Lake 541 

Michigan into Ohio and Pennsylvania. 542 

 543 

5. Conclusions 544 

This study was undertaken to assess the utility of the MAIAC algorithm for retrieving aerosol 545 

information from a passive satellite sensor through a comparison with the aerosol products from VIIRS 546 

and ground-based sun photometers. With these data sets as benchmarks, we were able to evaluate the 547 

spatial coverage and accuracy of the MAIAC AOT product. Using data gridded to 0.25 degrees,  we 548 

found that MAIAC is capable of providing retrievals over a varied set of surface types, including the 549 

bright and soil dominated surfaces which restrict the coverage of the common dark-target only 550 

algorithms (VIIRS, MODIS). The number of valid high-quality retrievals MAIAC produces is also 551 

greater, leading us to evaluate the cloud mask performance of both algorithms through matchups with 552 

CALIOP.  Those matchups showed that both MAIAC and VIIRS had similar accuracy, however we 553 

found MAIAC to be more conservative in its assignment of clear-sky pixels. When compared directly 554 

with VIIRS, MAIAC produces AOT values that on average are 0.017 lower than VIIRS during 2013. 555 
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There is large seasonality however, with minor differences for winter and fall, and larger separation seen 556 

in the summer season.  557 

In order to conduct a more robust accuracy assessment including the dependence of the algorithms on 558 

viewing geometry and surface reflectance, both datasets were also evaluated against AERONET Level 2 559 

AOT. MAIAC showed little dependence on viewing zenith, however there was some negative 560 

association with the scattering angle and the brightness of the surface. VIIRS showed negative 561 

association with viewing angle, but was positive with scattering angle and surface reflectance.  Biases as 562 

a function of surface reflectance were further stratified based on scattering direction because of the 563 

differences in errors seen with both products. Trends in VIIRS bias as a function of surface reflectance 564 

were not greatly affected by scattering direction, although overall errors were larger in the forward-565 

scattering direction. Analysis of MAIAC showed that it only has strong dependence on surface 566 

reflectance when the surface is viewed in the back-scattering direction. 567 

The results of this bias analysis coincided well with the initial investigations of the MAIAC algorithm. 568 

The results after studying the VIIRS biases with respect to scattering direction however were not 569 

consistent with previous validation studies; therefore a closer look was taken at those highly biased 570 

matchups. It was found that urban backgrounds may be causing, or at least intensifying the positive bias 571 

seen in VIIRS AOT. Overall, the MAIAC algorithm has shown the ability to perform well over the 572 

North American region with a high level of accuracy given its spatial resolution.  Global analysis over a 573 

longer time period will be needed to make certain that the product(s) are robust and meet the levels of 574 

accuracy needed for aerosol monitoring. 575 
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 700 

Tables 701 

Table 1. Confusion matrix showing the designation of pixels from each cloud mask associated with the 702 
two algorithms compared with information on clouds from CALIPSO lidar taken as the “truth” datasets. 703 

The abbreviations in parenthesis note the location of the following test outcomes for both sets of data: 704 

True Positive (TP); False Positive (FP); False Negative (FN); and True Negative (TN). 705 

 VIIRS MAIAC 

CALIPSO 

                Cloudy Clear Cloudy Clear 

Cloudy 65079 (TP) 14479 (FN) 1055111 40781 

Clear 4129 (FP) 47298 (TN) 235293 605130 
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Accuracy 86% 86% 
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Figures 722 
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 723 

Figure 1.  Map of the domain area used to grid the MAIAC and VIIRS AOT datasets. Domain was 724 

chosen based on the extent of MAIAC data currently available over North America. Coordinates of the 725 
upper left corner are (51° N, 129° W) and the lower right coordinates are (22° N, 65° W). Map data 726 

courtesy of Google Earth Pro (V 7.1.2.2041), Landsat.  727 

  728 
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Figure 2. Maps of gridded AOT at 550 nm (top) and retrieval count (bottom) from VIIRS and MAIAC for: (a) winter; (b) spring; (c) summer; 730 

and (d) fall. Large portions of missing data in MAIAC maps over southern Canada are caused by the geographic extent of available data in 731 

this region.732 
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 734 

Figure 3. Set of four-panel plots showing matched VIIRS (upper left) and MAIAC (upper right) AOT 735 
along with number of days with coincident observations (lower left), and AOT difference between the 736 

products (lower right) for the spring (a) and summer (b) seasons. 737 
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 739 

Figure 4. Scatter plots showing the relationship between AERONET AOT and VIIRS (a) and MAIAC 740 

(b). The dashed line represents the 1:1 line where the two datasets would be in complete agreement, 741 
while the solid lines represent the linear regression model (chi-squared test) provided at the top of each 742 

figure. Relevant relational statistics for correlation, r; number of observation, N; and bias are also given. 743 

 744 

 745 

Figure 5. Box and whisker plot showing the dependence of the VIIRS (blue) and MAIAC (red) bias on 746 
the AOT as measured by AERONET.  Any missing data is due to the lack of matchups (< 5) in that 747 

AOT bin. 748 
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 749 

Figure 6.  AOT errors from the (a) VIIRS, and (b) MAIAC matchups as a function of AERONET 750 
Angstrom Exponent, with regression line drawn in black. Data points are color-coded based on the 751 

AERONET AOT retrieval associated with those matchups. 752 
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 753 

Figure 7.  Dependence of AOT bias on: (a) viewing zenith angle; (b) relative azimuth angle; (c) 754 

scattering angle; and (d) surface reflectance at 555 nm according to MAIAC. VIIRS data is shown in 755 

blue and MAIAC in red, while the horizontal zero line (gray) is added for reference.  756 

 757 

 758 

Figure 8. Dependencies on surface brightness split into observations taken from the forward-scattering 759 
(left) and back-scattering (right) direction.  Bias is on the left-hand vertical axis and represented by the 760 
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vertical lines, while the number of matchups in each reflectance bin are given by the vertical bars and 761 

occupy the right-hand vertical axis.  762 
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 763 

Figure 9. Example of high aerosol loading on August 25th, 2013 over the western U.S. due to regional 764 

fires. (a) True-color image from S-NPP VIIRS; (b) VIIRS high quality IP AOT; (c) MAIAC AOT. 765 
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 766 

Figure 10. Image of a moderate AOT case from September 5, 2013. (a) True-color image from S-NPP 767 

VIIRS; (b) VIIRS high quality IP AOT; (c) MAIAC AOT. 768 


